Sumber Energi Terbarukan yang Terabaikan

Dr. Ir. Ledis Heru Saryono Putro, M.Si., dilahirkan di Wonogiri, Jawa Tengah pada hari Senin Kliwon, tanggal 23 Maret 1970. Alumni Program Studi Doktor Ilmu Lingkungan Universitas Sriwijaya tahun 2020, merupakan tenaga pengajar Prodi Biologi Fakultas Sains dan Teknologi UIN Raden Fatah Palembang.

Agro-industri pabrik pengolahan kelapa sawit (PKS) akan menimbulkan "by-product" berupa air limbah (POME) kaya bahan organik, berpotensi mencemari lingkungan. Pengolahan

POME di Indonesia masih dominan dengan metode konvensional tanpa penangkapan biogas-metana. Sistem ini, mengemisikan biometana sebagai gas rumah kaca (GRK) ke atmosfer terus-menerus dengan jumlah tidak diketahui dan tidak terkendali. Pada sisi lain, biometana merupakan sumber energi terbarukan dan berkelanjutan. Di PKS >90% emisi GRK disebabkan dari POME. Potensi energi listrik hasil penangkapan gas metana di PKS kapasitas 30 ton TBS/jam setara kapasitas pembangkitan energi listrik optimum 0,734 MWe, senilai Rp10,521 miliar/tahun. Namun potensi energi terbarukan tersebut saat ini masih terabaikan. Melihat potensinya sebagai polutan, sekaligus potensial untuk konversi ke energi terbarukan, maka pemerintah-pelaku industri kelapa sawit-pemangku kepentingan terkait, perlu segera untuk membangun sistem, mendorong, memfasilitasi, dan menetapkan regulasi guna mewujudkan reduksi emisi metana melalui konversi POME ke energi, sebagai kontribusi nyata unit PKS untuk reduksi emisi GRK-nya.

Buku ini merupakan hasil penelitian penulis yang dilakukan selama tahun 2018-2019. Pokok-pokok yang dihasilkan dari penelitian ini ialah: (1) koefisien konversi emisi metana 0,2102 kg CH4/kg COD-terdegradasi dari kolam anaerobik IPAL PKS multiple feeding system, lebih rendah dari stoikiometri (0.25) karena fase biodegradasi anaerobik optimum secara umum belum tercapai. Koefisien ini untuk estimasi emisi metana secara cepat di PKS dengan IPAL sejenis, (2) model emisi metana berbasis jaringan saraf tiruan radial basis function neural network dengan akurasi 97,7% dan MSE 0,000356, model hybrid RBFNN-GA untuk optimalisasi upaya pengelolaan emisi metana minimum atau maksimum pada pengolahan POME.

PT RAJAGRAFINDO PERSADA

Energi Terbarukan yang Terabaikan

Dr. Ir. Ledis Heru Saryono Putro, M.Si.

dari Air Limbah Pabrik Pengolahan Kelapa Sawit

Sumber Energi Terbarukan yang Terabaikan

Dr. Ir. Ledis Heru Saryono Putro, M.Si.

Penyunting Ahli Prof. Dr. Ir. Dedik Budianta. M.S. Dosen Program Studi Doktor Ilmu Lingkungan Universitas Sriwijaya

Biometana dari Air Limbah Pabrik Pengolahan Kelapa Sawit

Biometana dari Air Limbah Pabrik Pengolahan Kelapa Sawit

Sumber Energi Terbarukan yang Terabaikan

Dr. Ir. Ledis Heru Saryono Putro, M.Si.

PERS

RAJAWALI PERS Divisi Buku Perguruan Tinggi PT RajaGrafindo Persada DEPOK

Perpustakaan Nasional: Katalog dalam terbitan (KDT)

Ledis Heru Saryono Putro.

Biometana dari Air Limbah Pabrik Pengolahan Kelapa Sawit (Sumber Energi Terbarukan yang Terabaikan)/Ledis Heru Saryono Putro.

-Ed. 1, Cet. 1.—Depok: Rajawali Pers, 2021.

xxviii, 286 hlm., 23 cm. Bibliografi: hlm. 185 ISBN 978-623-231-763-5

Hak cipta 2021, pada penulis

Dilarang mengutip sebagian atau seluruh isi buku ini dengan cara apa pun, termasuk dengan cara penggunaan mesin fotokopi, tanpa izin sah dari penerbit

2021.2961 RAJ

Dr. Ir. Ledis Heru Saryono Putro, M.Si. BIOMETANA DARI AIR LIMBAH PABRIK PENGOLAHAN KELAPA SAWIT Sumber Energi Terbarukan yang Terabaikan

Cetakan ke-1, Februari 2021

Hak penerbitan pada PT RajaGrafindo Persada, Depok

Editor : Indi Vidyafi
Setter : Feni Erfiana
Desain cover : Tim Kreatif RGP

Dicetak di Rajawali Printing

PT RAJAGRAFINDO PERSADA

Anggota IKAPI

Kantor Pusat:

Jl. Raya Leuwinanggung, No.112, Kel. Leuwinanggung, Kec. Tapos, Kota Depok 16956

Telepon: (021) 84311162

E-mail : rajapers@rajagrafindo.co.id http://www.rajagrafindo.co.id

Perwakilan:

Jakarta-16956 Jl. Raya Leuwinanggung No. 112, Kel. Leuwinanggung, Kec. Tapos, Depok, Telp. (021) 84311162. Bandung-40243, Jl. H. Kurdi Timur No. 8 Komplek Kurdi, Telp. 022-5206202. Yogyakarta-Perum. Pondok Soragan Indah Blok A1, Jl. Soragan, Ngestiharjo, Kasihan, Bantul, Telp. 0274-625093. Surabaya-60118, Jl. Rungkut Harapan Blok A No. 09, Telp. 031-8700819. Palembang-30137, Jl. Macan Kumbang III No. 10/4459 RT 78 Kel. Demang Lebar Daun, Telp. 0711-445062. Pekanbaru-28294, Perum De' Diandra Land Blok C 1 No. 1, Jl. Kartama Marpoyan Damai, Telp. 0761-65807. Medan-20144, Jl. Eka Rasmi Gg. Eka Rossa No. 3A Blok A Komplek Johor Residence Kec. Medan Johor, Telp. 061-7871546. Makassar-90221, Jl. Sultan Alauddin Komp. Bumi Permata Hijau Bumi 14 Blok A14 No. 3, Telp. 0411-861618. Banjarmasin-70114, Jl. Bali No. 31 Rt 05, Telp. 0511-3352060. Bali, Jl. Imam Bonjol Gg 100/V No. 2, Denpasar Telp. (0361) 8607995. Bandar Lampung-35115, Perum. Bilabong Jaya Block B8 No. 3 Susunan Baru, Langkapura, Ho. 081299047094.

KATA PENGANTAR

Rektor Universitas Islam Negeri Raden Fatah Palembang

Universitas Islam Negeri Raden Fatah Palembang sebagai institusi yang membangun sumber daya manusia, selain mendidik, kegiatan penelitian merupakan program prioritas dalam upaya pengembangan ilmu pengetahuan dan teknologi. Selanjutnya hasil penelitian tersebut akan diimplementasikan kepada masyarakat, yang disebut pengabdian pada masyarakat. Dalam kegiatan belajar-mengajar diperlukan piranti keras maupun lunak, sehingga *transfer* ilmu-pengetahuan berjalan secara optimal. Bahan pustaka, antara lain berupa buku merupakan satu di antara piranti keras penting yang mesti dimiliki baik dosen maupun seorang mahasiswa.

Puji syukur Alhamdulillah, bahwa buku yang berjudul Biometana dari Air Limbah Pabrik Pengolahan Kelapa Sawit: Sumber Energi Terbarukan yang Terabaikan, yang ditulis oleh Saudara Dr. Ir. Ledis Heru S. Putro, M.Si., tenaga pengajar Program Studi Biologi Fakultas Sains dan Teknologi UIN Raden Fatah Palembang telah diterbitkan. Buku ini merupakan hasil penelitian penulis yang cukup panjang (2 tahun), yang menemukan koefisien konversi dan memodelkan emisi metana dari pengolahan POME untuk konversi menjadi energi terbarukan sebagai kontribusi nyata pabrik kelapa sawit dalam mereduksi GRK-nya.

Saya menyambut baik atas karya tulis ini, yang membahas upaya mengurangi dan meningkatkan daya-guna limbah melalui "waste to energy", dengan konversi limbah menjadi sumber energi bersih yang terbarukan dan berkelanjutan. Bahan pustaka ini diharapkan dapat menjadi sumber informasi demi kemajuan ilmu pengetahuan, khususnya bidang applied science. Untuk itu saya ucapkan selamat atas

karya ini, dan berterima kasih karena telah menambah bahan pustaka yang berarti bagi dunia perguruan tinggi, dan tidak hanya dimanfaatkan oleh UIN Raden Fatah Palembang, tetapi juga perguruan tinggi lainnya. Serta terakhir, semoga karya tulis ini menjadi amal kebajikan bagi penulisnya. *Amiin ya rabbal 'alamin*.

Palembang, Februari 2021

Rektor,

Prof. Dr. Nyayu Khodijah, M.Si.

NIP. 19700825 199503 2 001

AN PROPERS

PENGANTAR PENYUNTING

Buku ini dihasilkan dari kajian Dr. Ir. Ledis Heru S. Putro, M.Si. selama lebih kurang 2 tahun 2018-2019, baik berupa data primer maupun dari data sekunder yang relevan dari berbagai pustaka. Intisari kajian dalam buku ini ialah timbulan emisi metana pada pengolahan palm oil mill effluent (POME) di pabrik pengolahan kelapa sawit (PKS) dengan jumlah yang belum diketahui secara pasti. Padahal emisi biometana tersebut dapat bermanfaat bagi kehidupan manusia dan sebaliknya dapat menjadi polutan yang berbahaya untuk atmosfer, sebagai gas rumah kaca. Banyak data yang diperoleh dari penelitian lapangan pada pabrik pengolahan kelapa sawit di Kabupaten Banyuasin Provinsi Sumatera Selatan selama tahun 2018-2019.

Berdasarkan pendataan dan *monitoring* di lapangan, pengujian laboratorium, dan perhitungan matematis, didapatkan empat hal pokok yaitu: (1) Kandungan organik POME tinggi dicirikan dengan kadar COD tinggi (52,036 gram/L), dengan nilai penyisihan pada kolam anaerobik 78,04% menunjukkan terjadinya degradasi POME yang dihasilkan biometana; (2) emisi biogas-metana ke atmosfer sebagai GRK yang berasal dari POME tersebut sekitar 274,084 gram/m²/hari setara 1.678,8 kg/hari (2.345,45 m³/hari); (3) koefisien konversi 0,2102 kg CH₄/kg COD-terdegradasi di kolam anaerobik IPAL PKS *multiple feeding system*, lebih rendah dari stoikiometri (0,25) karena fase biodegradasi anaerobik optimum secara umum belum tercapai. Koefisien ini berguna untuk estimasi emisi metana secara cepat di PKS lain dengan model IPAL sejenis. Nilai kapasitas pembangkitan energi listrik sekitar 0,734

MWe atau senilai Rp10,521 miliar/tahun berasal dari penangkapan gas metana dari PKS kapasitas 30 ton TBS/jam; (4) model emisi metana berbasis jaringan saraf tiruan *radial basis function neural network* dengan akurasi 97,7% dan MSE 0,000356, model *hybrid* RBFNN-GA untuk optimalisasi upaya pengelolaan emisi metana minimum atau maksimum pada pengolahan POME. Optimalisasi tersebut, akan memberi alternatif kepada PKS melakukan pilihan maksimum emisi metana dengan sistem *metane capture* pada konversi POME ke energi terbarukan.

Dari hasil penelitian penulis tersebut di atas, serta kedekatan saya dengan saudara Dr. Ir. Ledis Heru S. Putro, M.Si., karena selain sebagai dosen di kelasnya, juga sebagai pembimbing saat studi S2 Prodi Pengelolaan Lingkungan serta sebagai promotor saat studi S3 Prodi Ilmu Lingkungan Universitas Sriwijaya, sehingga secara keseluruhan buku ini merupakan "ilmu-terapan" bidang waste management-biotechnology-renewable energy yang menjelaskan secara luas untuk konversi limbah menjadi energi terbarukan ("waste to renewable energy"), sekaligus mereduksi emisi metana dari pabrik kelapa sawit yang pada saat ini sangat menopang devisa negara dan kesejahteraan masyarakat Indonesia. Oleh karena itu, buku ini sangat layak untuk dibaca dan menjadi referensi bagi para mahasiswa, dosen, peneliti, pelaku usaha agro-industri kelapa sawit dan masyarakat umum lainnya, baik lembaga formal maupun non-formal yang ingin menekuni bidang pengelolaan limbah.

Upaya saudara Dr. Ir. Ledis Heru S. Putro, M.Si. dalam melakukan penelitian untuk menghasilkan sebuah buku yang berharga ini tidaklah mudah, tetapi telah dilakukan dan berhasil dilaluinya; termasuk niat dan kerja kerasnya sehingga dapat diterbitkan menjadi buku ini. Dalam kesempatan ini saya mengucapkan selamat atas kerja keras dan buah pikirannya. Semoga dengan buku ini menjadi pendorong dan titikmulai untuk lebih semangat melakukan kajian ilmiah, penelitian dan menghasilkan karya-karya selanjutnya di bidang yang digelutinya. Diharapkan pula kepada penerbit buku ini, dapat memberikan jalan kepada saudara Dr. Ir. Ledis Heru S. Putro, M.Si. untuk menjadikan buku ini dikenal dan bermanfaat bagi masyarakat luas, turut membangun

bangsa dan mengembangkan ilmu-pengetahuan, serta mendorong terciptanya karya-karya selanjutnya.

A PERS

Palembang, Februari 2021

Guru Besar Universitas Sriwijaya

(Dosen Ilmu Lingkungan),

Prof. Dr. Ir. Dedik Budianta, M.S.

PENGANTAR PENULIS

Puji syukur Alhamdulillahirrobbil'alamiin penulis panjatkan kepada Allah SWT, yang telah melimpahkan rahmat, karunia dan hidayah-Nya, sehingga dapat menyelesaikan penulisan buku yang berjudul Biometana dari Air Limbah Pabrik Pengolahan Kelapa Sawit: Sumber Energi Terbarukan yang Terabaikan.

Buku ini merupakan karya penulis berdasarkan penelitian yang telah dilakukan pada 2018-2019 di pabrik pengolahan kelapa sawit di Provinsi Sumatera Selatan. Proses pengolahan tandan buah segar kelapa sawit (TBS) menjadi *crude palm oil* (CPO) dan *palm kernel oil* (PKO) dihasilkan "produk samping" berupa air limbah yang lazim disebut air limbah pabrik pengolahan kelapa sawit (disebut pula pabrik kelapa sawit); (LCPKS) atau *palm oil mill effluent* (POME) dalam jumlah besar. Pada pengolahan POME dengan sistem kolam (*lagoon/ponding system*) diemisikan biogas-metana (biometana) dengan jumlah tidak diketahui dan tidak terkendali. POME atau LCPKS segar sangat polutan karena mengandung kadar bahan organik tinggi dan potensial mencemari lingkungan hidup. Namun, POME pada sisi lain adalah sumber energi terbarukan (*renewable*) dan berkelanjutan (*sustainable*).

Pengukuran emisi biogas-metana dari kolam anaerobik di lapangan, masih jarang dilakukan, yang memungkinkan diketahui nilai emisinya secara langsung dari kolam anaerobik di instalasi pengolahan air limbah (IPAL) pabrik kelapa sawit. Untuk itu, diperlukan adanya sebuah koefisien (faktor) konversi antara emisi metana dibanding komponen organik (kg atau m³) CH₄ per (kg COD atau per kg VS) yang secara cepat dapat untuk mengetahui nilai estimasi emisi biometana di berbagai

IPAL pabrik kelapa sawit sejenis. Emisi biometana terjadi terus-menerus dari kolam anaerobik di pabrik kelapa sawit ke atmosfer sebagai gas rumah kaca (GRK), sehingga dengan melakukan penangkapan metana (methane capture; covered lagoon) akan diperoleh energi yang bersih, terbarukan dan berkelanjutan, sekaligus menjadi upaya reduksi GRK di pabrik kelapa sawit. Pabrik kelapa sawit kapasitas 30 ton TBS/jam potensial pembangkitan energi listrik 0,734 MWe (5.788 MWh/tahun) dari pengolahan/biodegradasi POME. Aplikasi pemodelan hybrid jaringan saraf tiruan-algoritma genetika sangat baik dalam optimalisasi variabel faktor lingkungan dan air limbah untuk mencapai emisi metana minimum, atau maksimum dalam pengolahan POME melalui kolam konvensional atau melalui konversi menjadi biogas-metana sebagai sumber energi terbarukan.

Sumber informasi yang komprehensif terkait emisi biometana dari pengolahan POME pabrik kelapa sawit sangat diperlukan, baik oleh praktisi agro-industri kelapa sawit, mahasiswa, dan para peneliti bidang bioenergi, bioteknologi, dan lingkungan hidup. Pustaka di bidang ini dalam bahasa Indonesia dirasa masih sangat sedikit, sehingga para stakeholder, mahasiswa yang sedang melakukan penelitian, serta pelaku agro-industri kelapa sawit, sangat kesulitan mendapatkan sumber bahan pustaka tersebut. Terlebih dengan cakupan pembahasan yang luas termasuk informasi hasil-hasil penelitian terbaru oleh peneliti dunia di bidang ini, khususnya dari Malaysia dan Indonesia (sebagai negara penghasil minyak sawit ±85% dunia). Untuk memenuhi maksud tersebut, maka penulis berusaha menyajikan buku ini secara sederhana, tetapi dapat lebih komprehensif.

Dalam penyusunan buku ini sampai dengan diterbitkan, telah banyak pihak-pihak memberikan dukungan dan sumbangan tenaga maupun pikirannya. Penulis ingin menyampaikan ucapan terima kasih yang tulus kepada Rektor UIN Raden Fatah Palembang dan Dekan Fakultas Sains dan Teknologi periode 2016-2020 dan 2020-2024, atas segala bantuan dan kesempatan yang diberikan.

Terakhir, secara khusus penulis ingin menyampaikan penghargaan yang tulus dan ucapan terima kasih dari lubuk hati yang dalam, kepada: (1) Istriku tercinta, Merie Yulita, S.Hut., M.Si., yang senantiasa dengan sabar dan ikhlas menemani, memberikan semangat dan dorongan,

motivasi serta selalu mendoakan; sungguhpun dia dalam kesibukannya sebagai aparatur sipil negara dan mengurus keperluan keseharian rumah-tangga, (2) Anak-anakku tersayang dr. Azzahra Shinta Intansari dan Muhammad Bayu Dwitama, A.Md.Ak. atas kesabaran, keikhlasan, dukungan dan doa, serta semangat yang telah diberikan. Hal inilah juga yang menjadi penyemangat bagi penulis dalam memberikan tauladan, perlunya cara bekerja keras dan belajar sungguh-sungguh demi suatu tujuan dan keberhasilan.

Akhir kata, semoga buku ini dapat memberikan manfaat yang besar khususnya dalam upaya pengendalian dan reduksi GRK melalui konversi POME ke energi di pabrik pengolahan kelapa sawit. Penulis menyadari kesempurnaan hanya milik Allah SWT, sehingga buku ini masih terdapat kekurangan. Untuk itu, kritik dan saran sangat diharapkan guna perbaikan buku ini maupun tulisan yang akan datang. Semoga buku ini bermanfaat dan semoga Allah meridhoi, *amin ya robbal alamin*.

PERS

Palembang, Februari 2021

Penulis,

Dr. Ir. Ledis Heru S. Putro, M.Si.

DAFTAR ISI

		GANTAR	
Rektor	Uni	versitas Islam Negeri Raden Fatah Palembang	v
PENGA	NT	AR PENYUNTING	vii
PENGA	NT	AR PENULIS	xi
DAFTA	R IS	SI .	xv
DAFTA	R T	ABEL	xxi
DAFTA	R G	AMBAR	xxiii
DAFTA	R L	AMPIRAN	xxvii
BAB 1	PE	NDAHULUAN	1
	A.	Agroindustri Kelapa Sawit: Kesejahteraan Rakyat	
		dan Sumber Devisa	1
	B.	Potensi Limbah yang Ditimbulkan	2
	C.	Gas Terbuang yang Bermanfaat dan Metode	
		Pengukurannya	4
BAB 2	PE	NGELOLAAN AIR LIMBAH PABRIK	
		NGOLAHAN KELAPA SAWIT	9
	Α.	Karakteristik Air Limbah Pabrik Pengolahan Kelapa	1
	11.	Sawit Segar (Influent)	12
	В.	Sistem Kolam Terbuka (Konvensional)	15
	C.	Sistem Tangki Anaerobik (Anaerobic Digestion Tank)	17

	D.	Sistem Multi Pengumpanan (Multiple Feeding System)	19
		1. Perubahan Variabel pH dan Suhu	21
		2. Karakteristik Air Limbah Pabrik Kelapa Sawit	25
BAB 3	PR	ODUKSI BIOMETANA	35
	A.	Pengertian dan Manfaat Biogas-Metana	35
70	В.	Biogas-Metana sebagai Limbah Gas	37
D	C.	Biogas-Metana Hasil Biodegradasi Anaerobik	39
	D.	Proses Produksi Biometana pada	
		Biodegradasi Anaerobik	42
		1. Hidrolisis	44
		2. Asidogenesis (Fermentasi)	45
		3. Asetogenesis	46
		4. Metanogenesis	47
	E.	Komunitas Mikroba	47
	F.	Biodigester pada Produksi Biometana	51
		A	
BAB 4	FA	KTOR-FAKTOR YANG MEMENGARUHI	
	PR	ODUKSI BIOMETANA	57
	A.	Temperatur (Suhu)	58
	В.	Derajat Keasaman (pH)	60
	C.	Nutrisi dan Rasio C/N	62
	D.	Toksisitas dan Keseimbangan Senyawa	66
	E.	Waktu Tinggal (Hydraulic Retention Time/HRT)	69
	F.	Laju Permuatan Organik (Organic Loading Rate/OLR)	69
	G.	Oksidasi-Reduksi Potensial (ORP)	70
BAB 5	EM	IISI BIOGAS-METANA PADA KOLAM	
	AN	IAEROBIK	77
	A.	Metode Sampling dan Prosedur Pengukuran Emisi	
		Biometana Kolam Anaerobik	77
	B.	Pengukuran dan Kinerja Sistem Alat CH ₄ -meter	
		Berbasis Sensor	80

	C.	Em	isi Biogas-Metana	83
		1.	Formula Perhitungan Emisi Biogas-Metana	83
		2.	Kandungan Komponen Organik: Substrat pada	
			Proses Biodegradasi Anaerobik	85
		3.	Estimasi Emisi Metana Kolam Anaerobik	88
		4.	Pengaruh Suhu Air Kolam Limbah dan Suhu	
7			Udara Terhadap Emisi Metana	91
	D.	Коє	efisien Konversi Emisi Biogas-Metana	94
		1.	Penentuan Koefisien Konversi	94
		2.	Koefisien Konversi: Rasio Emisi Metana	
T			dengan Komponen Organik	95
	E.	Pot	ensi Gas Metana sebagai Sumber Energi	
		Terl	barukan	99
4		1.	Formula Perhitungan	99
		2.	Potensi Energi Terbarukan dari LCPKS	100
BAB 6	KIN	IET:	IKA PEROMBAKAN BAHAN ORGANIK	
	SEC	CAR	A ANAEROBIK	103
	A.	Kin	etika Pertumbuhan Mikroorganisme pada	
		Ope	erasi Batch dan Steady-state	103
	B.	Kin	etika Berdasarkan Tahapan Pembatasan	
		Lajı	u Proses	104
		1.	Kinetika Orde Pertama	105
		2.	Kinetika Model Monod	108
	C.		bandingan Kinerja Model Monod dan Kinetika	
		Orc	le Pertama	111
	D.	Apl	ikasi Kinetika Ordo Pertama Biodegradasi	
		Ana	aerobik Limbah Cair Pabrik Kelapa Sawit	112
		1.	Formula untuk Studi Kinetika Ordo Pertama	112
		2.	Kinetika Ordo Pertama Berdasarkan Data	
			Pengukuran Lapangan	114

BAB 7	PE	MODELAN EMISI BIOGAS-METANA	121
	A.	Pemodelan (Modeling)	121
	B.	Jaringan Saraf Tiruan (JST) dan Aplikasinya pada	
		Model Emisi Metana	123
		1. Arsitektur Model Jaringan Saraf Tiruan	125
		2. Metode Pembelajaran Jaringan Saraf Tiruan	127
70		3. Fungsi Aktivasi	129
D		4. Algoritma Radial Basis Function Neural Network (RBFNN)	130
	C.	Instrumen Validasi Model	135
7	D.	Algoritma Genetika	137
	E.	Aplikasi Jaringan Saraf Tiruan Algoritma RBFNN	141
		1. Prosedur Pemodelan Emisi Metana	141
4		2. Pemodelan Emisi Metana	147
		3. Validasi Model Emisi Metana	151
	F.	Optimasi Emisi Metana dengan Hybrid RBFNN-	
		Algoritma Genetika	157
		1. Prosedur Optimasi Emisi Metana	157
		2. Optimasi Emisi Metana dengan Hybrid	
		RBFNN-Algoritma Genetika dan Analisisnya	159
	G.	Simulasi Emisi Metana dengan RBFNN	164
BAB 8	PE	MANFAATAN BIOGAS-METANA: SARANA	
	RE	DUKSI GRK DI PABRIK PENGOLAHAN	
	KE	ELAPA SAWIT	173
	A.	Dua Sisi Metana: Mudarat sebagai GRK dan	
		Manfaat sebagai Sumber Energi Terbarukan	173
	B.	Konversi LCPKS menjadi Biogas-Metana:	
		Pemanfaatan sebagai Sumber Energi	1.55
		Terbarukan	175
		1. Kapasitas Listrik Hasil Konversi LCPKS	175
		2. Manfaat Konversi LCPKS menjadi	1.77
		Energi Terbarukan	177

C.	Pokok-Pokok Hasil Monitoring Lapangan	179
D.	Upaya Reduksi GRK melalui Konversi LCPKS ke	
	Energi	182
DAFTAR P	USTAKA	185
GLOSARIU	JM	213
LAMPIRAN	1	227
INDEKS		275
BIOGRAFI	PENULIS	279
7		
5		
7		
	A	
	PERS	

DAFTAR TABEL

2.1.	Karakteristik air limbah pabrik kelapa sawit (LCPKS)	
	segar (influent)	12
2.2.	Komposisi konstituen utama, asam amino, asam lemak	
	dan mineral pada LCPKS segar	13
2.3.	Dinamika pH dan temperatur air limbah di kolam LCPKS	22
2.4.	Monitoring rerata kualitas LCPKS IPAL selama 2 bulan	26
2.5.	Ringkasan karakteristik LCPKS dari kolam limbah	27
2.6.	Penurunan variabel COD pada IPAL sistem	
	multi pengumpanan	31
3.1.	Komposisi biogas dari sumber biomassa berbeda	40
3.2.	Perbandingan metode biodegradasi anaerobik (AD)	
	dengan aerobik	42
3.3.	Komunitas mikroba yang terlibat konversi pada	
	biodegradasi anaerobik	49
4.1.	Selang nilai variabel operasional optimum	
	biodegradasi anaerobik	58
4.2.	Kinerja bioreaktor anaerobik pada penanganan LCPKS	
	berdasarkan OLR dan HRT	71
4.3.	Nilai ORP standar pasangan redoks dan ORP optimal dari	
	berbagai mikroorganisme	74
5.1.	Kualitas air limbah inlet dan oulet AP2, emisi metana, dan	
	faktor abiotik (n=13)	85
5.2.	Global Warming Potential (GWP) nilai relatif terhadan CO.	97

5.3.	Kapasitas pembangkitan energi dari konversi LCPKS ke	
	biogas-metana	100
6.1.	Nilai variabel aktual lapangan pada analisis model	
	kinetika orde pertama	114
6.2.	Konstanta laju (kinetika) model orde pertama pada	
	penelitian batch dan kontinu	116
7.1.	Variabel, peralatan dan metode pengambilan data	142
7.2.	Potensi variabel input-output model	143
7.3.	Pola data masukan pada pelatihan dan validasi model	144
7.4.	Arsitektur jaringan pada proses pelatihan	146
7.5.	Input-output model	147
7.6.	Set data dinormalisasi untuk pelatihan jaringan dan	
	validasi model	149
7.7.	MSE dan R ₂ hasil pelatihan model RBFNN dengan 7,6	
	dan 2 variabel input	150
7.8.	MSE dan persen akurasi hasil validasi model	152
7.9.	Optimasi emisi metana kolam anaerobik IPAL pabrik	
	kelapa sawit	162
7.10.	Arahan upaya pengelolaan LCPKS, hasil optimasi model	
	RBFNN-GA	163
7.11.	Emisi metana (gram/m²/hari) pada simulasi skenario	
	variabel minimum-maksimum-rerata pada	
	model RBFNN	165
8.1.	Potensi kapasitas pembangkit dan daya listrik PLTBg	
	pada konversi POME ke energi dari berbagai	
	kapasitas PKS	177

DAFTAR GAMBAR

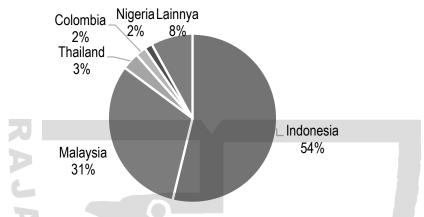
1.1.	Produksi minyak kelapa sawit dunia tahun 2017	2
2.1.	Sumber LCPKS pada pengolahan TBS di Pabrik Kelapa Sawit	10
2.2.	Dimensi IPAL sistem multi pengumpanan	20
2.3.	(a) lapisan skum tipis (AP2), (b) lapisan skum menebal	
	(AP3)	23
2.4.	Rerata nilai dan persen penyisihan variabel (a) BOD,	
	(b) COD, (c) TS, (d) VS, (e) minyak-lemak, dan (f) pH	30
3.1.	Biogas-metana hasil anaerobik digester sebagai siklus	
	yang berkelanjutan	36
3.2.	Potensi hasil metana dari berbagai bahan baku (feed-stock)	
	sebagai "limbah gas" sekaligus sumber energi	39
3.3	Konversi karbon dan energi sistem aerobik (atas) dan	
	anaerobik (bawah) pada pengolahan air limbah	
	(Van Lier et al., 2008)	41
3.4.	Skema biodegradasi anaerobik senyawa organik	
	kompleks menjadi biogas-metana	44
3.5.	Bioreaktor (biodigester) untuk degradasi anaerobik	55
4.1.	Hubungan ORP terhadap, (a) suhu, (b) pH, (c,d) DO	
	(Nguyen, 2018)	73
5.1.	Jenis-jenis sungkup untuk studi emisi biogas-metana	
	(sistem kolam), (a,b,c); penangkap gas terapung	
	(floating gas cover), (d)	78

5.2.	(a) Sungkup untuk menangkap gas metana, (b) Sistem	
	CH ₄ -meter (i) dan sungkup (ii)	78
5.3.	Penempatan sungkup (closed static chamber) di kolam	
	anaerobik (AP2-AP1)	79
5.4.	Hubungan tegangan keluaran (VRL) terhadap konsentrasi	
	metana, (a) sesuai Figaro (2012), (b) tranformasi ln(x)	
	untuk menjadi linear	82
5.5.	Dinamika emisi metana dari kolam anaerobik	89
5.6.	Emisi metana pada berbagai lokasi sampling	91
5.7.	Suhu udara ambient, suhu air limbah kolam anaerobik,	
1	dan emisi metana	92
5.8.	Pengaruh suhu air kolam limbah terhadap emisi metana	93
5.9.	Hubungan emisi gas metana dengan variabel air limbah,	
	(a) COD-terdegradasi, dan (b) VS-terdegradasi	97
5.10.	Dua tipe bioreaktor yang dominan digunakan pada	
	konversi LCPKS menjadi energi, (a) covered lagoon	
	(High Rate Anaerobic Lagoon; HRAL) dan (b) CSTR	102
6.1.	Fase pertumbuhan mikroorganisme dalam digester	
	anaerobik (Met-calf dan Eddy, 2003)	104
6.2.	(a) Profil hubungan 1/y dengan OLR model kinetika orde	
	pertama, (b) regresi model (prediksi) versus aktual	115
6.3.	Variasi OLR terhadap, (a) konstanta kinetika (k) dan	
	emisi metana, (b) emisi (produksi) metana	118
7.1.	Sebuah sel saraf tiruan (Fausett, 1994)	126
7.2.	Jaringan lapis jamak (Fausett, 1994)	128
7.3.	Arsitektur jaringan Radial Basis Function (Assi, 2011;	
	Haykin, 2009)	131
7.4.	Diagram alir algoritma K-means clustering metode SOM	133
7.5.	Arsitektur RBFNN	145
7.6.	Diagram alir pemodelan RBFNN	146
7.7.	MSE hasil pelatihan model 1 s.d 24	151
7.8.	Grafik MSE hasil validasi model RBFNN	153
7.9.	Arsitektur RBFNN model 10 (6-3-1: akurasi tertinggi)	155

7.10	. Emisi metana model 2 dan 10 vs aktual data, (a) proses	
	pelatihan, (b) validasi model; regresi data aktual vs	
	output model 10, (c) data latih, (d) validasi model	156
7.11.	. Diagram alir optimasi dengan hybrid RBFNN-	
	genetika algoritma	157
7.12	. Kurva respons dan kontur simulasi skenario variabel-	
	minimum (COD-R vs Eh-out dinamis), data aktual	
	lapangan input model diturunkan, (a,b) 0%, (c,d) 5%,	
	dan (e,f) 10%	169
7.13.	Kurva respons dan kontur simulasi skenario variabel-	
	maksimum (COD-R vs Eh-out dinamis), data aktual	
	lapangan input model ditingkatkan, (a,b) 0%, (c,d) 5%,	
	dan (e,f) 10%	170
7.14	. Kurva respons dan kontur skenario variabel-rerata; (a,b)	
	TU-rerata vs COD-R, (c,d) VS-R vs Eh-out, dan (e,f)	
	COD-R vs Eh-out	171
8.1.	(a) Sumber-sumber emisi GRK secara global, (b) emisi	
	metana sumber antropogenik (US-EPA dalam	
	Tanaka, 2009)	174
8.2.	(a) Secara kasat mata "tampak biasa" dari tangki	
	penyimpanan minyak, (b) dengan kamera lensa	
	inframerah, emisi metana "tampak" sebagai "asap hitam"	175
8.3.	Laju emisi metana dari berbagai bahan substrat dan	
	POME (Lam dan Lee, 2011)	176
8.4.	Manfaat konversi POME ke energi dan pupuk organik	178

DAFTAR LAMPIRAN

1.	Visualisasi kondisi dan kinerja pembentukan gas metana	
	di kolam limbah dipengaruhi dinamika cuaca	228
2.	Hasil uji laboratorium dan uji lapangan sampel air limbah kolam anaerobik II (AP2)	230
3.	Data dan perhitungan kadar bahan organik LCPKS variabel	
	COD dan VS, volume AP, dan HRT AP2-AP1	233
4.	Hasil uji laboratorium variabel gas metana (CH ₄) dari	
	sampel biogas kolam anaerobik (AP2-AP1)	235
5.	Pengolahan data produksi (emisi) metana dari kolam	
	anaerobik (AP2-AP1)	237
6.	Hasil pemantauan suhu air limbah kolam anaerobik dan	
	suhu udara sekitar IPAL PKS	241
7.	Perhitungan dan pengolahan data untuk mengetahui	
	hubungan suhu air kolam limbah dengan emisi metana	244
8.	Konversi satuan dan konstanta yang terkait dalam	
	perhitungan konversi biogas-metana ke energi	246
9.	Perhitungan koefisien konversi (kg CH ₄ /kg COD-	
	terdegradasi) dan (kg CH ₄ /kg VS-terdegradasi)	250
10.	Rekapitulasi data lapangan: faktor air limbah, faktor	
	lingkungan abiotik, dan emisi metana dari kolam anaerobik	
	(AP2-AP1) dan lingkungan sekitarnya	252
11.	Kode pemrograman Matlab pada modeling RBFNN	253


12.	Kode pemrograman Matlab dan hasil <i>running</i> program, pada optimasi-maksimum <i>hybrid</i> RBFNN-genetika algoritma	259
13.	Emisi metana hasil simulasi skenario variabel-minimun; variabel-maksimum, dan variabel-rerata	266
14.	Kurva respons dan kontur emisi metana simulasi skenario	
	variabel rerata model RBFNN	273
	A PARS	

PENDAHULUAN

A. Agroindustri Kelapa Sawit: Kesejahteraan Rakyat dan Sumber Devisa

Perkebunan dan industri kelapa sawit sebagai salah satu komoditas ekspor terpenting telah berkembang pesat dalam dua dekade terakhir. Ini menjadi salah satu komoditas paling strategis dalam mendukung pembangunan ekonomi di Indonesia. Hal tersebut menjadikan Indonesia sebagai negara penghasil minyak kelapa sawit terbesar di dunia sejak 2006, menggantikan posisi Malaysia (Djamhur, 2015). Pada 2016 produksi minyak sawit kasar (*Crude Palm Oil/CPO*) Indonesia mencapai 33,23 juta ton (Ditjen Perkebunan, 2016), sekitar 57% dari produksi dunia sebesar 58,29 juta ton.

Kelapa sawit menjadi produk pertanian terpenting setelah beras, karena menyediakan lapangan kerja dan penyumbang devisa negara terbesar dari non-migas. Indonesia menjadi eksportir minyak sawit terbesar, pada tahun 2016 sebesar 25,1 juta ton (GAPKI, 2017), dengan nilai devisa mencapai USD 17,8 miliar, dengan 5,9 juta tenaga kerja (11%). Diperkirakan pada jangka panjang luas dan produksi sawit terus meningkat, sejalan dengan pengembangan dan kegunaan minyak sawit menjadi energi, seperti biodiesel, bioetanol dan biogas sebagai sumber energi terbarukan, serta menjadi subsitusi bahan bakar minyak bumi (Peraturan Pemerintah 79/2014). Tiga negara produsen minyak kelapa sawit terbesar dunia adalah Indonesia, Malaysia dan Thailand, tahun 2017 masing-masing sebesar 53,8% (36 juta ton), 31,4% (21 juta ton), dan 3,3% (2,2 juta ton) atau mencapai 88,5% (59,2 juta ton); (Aziz *et al.*, 2019; Iskandar *et al.*, 2018); (Gambar 1.1).

Gambar 1.1. Produksi minyak kelapa sawit dunia tahun 2017

B. Potensi Limbah yang Ditimbulkan

Menurut Wicke *et al.* (2008), pada proses pengolahan tandan buah segar (TBS) kelapa sawit menjadi minyak kelapa sawit kasar, dihasilkan CPO sekitar 21,5-23 persen (± 230 kg CPO) dan 55 kg inti sawit (*Palm Kernel*/PK); (Buana *et al.*, 2004), sisanya berupa hasil samping atau limbah berbentuk padat, cair, dan gas. Limbah padat terdiri atas tandan buah kosong (16-23%), serat perasan buah (11- 26%), inti sawit (4%), cangkang (4-6%), dan limbah padat lain (16,5%). Menurut Mahajoeno (2008), dalam pengolahan 1 ton tandan buah segar (TBS) akan dihasilkan 0,7 m³ air limbah. Sedangkan menurut Yuliasari *et al.* (2001); Morad *et al.* (2008), akan dihasilkan limbah cair pabrik kelapa sawit (LCPKS); (*Palm Oil Mill Effluent*/Pome) 0,75-0,90 m³/ton TBS atau 3,33 ton LCPKS (2,5-3 ton menurut Wu *et al.*, 2010) untuk setiap ton CPO.

LCPKS dari pabrik kelapa sawit potensial sebagai sumber pencemaran lingkungan, sehingga diperlukan pengelolaan dan peningkatan teknologi pengolahan, serta upaya reduksi (reduce), daur ulang (recycle) dan penggunaan kembali (reuse). LCPKS mengandung variabel biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), total disolved solid (TDS), volatile solid (VS) tinggi, sehingga berpotensi sebagai sumber pencemar. Pembuangan LCPKS tanpa pengolahan ke perairan dapat berdampak mencemari sumber air bersih, menurunkan kadar oksigen terlarut, menurunkan

kesehatan ikan dan biota air (Lam dan Lee, 2011). Penelitian yang dilakukan oleh Mahajoeno (2008), menunjukkan bahwa LCPKS bersifat koloid, kental, coklat atau keabu-abuan, pH 4,4-5,4 dan mempunyai rerata kandungan COD 49,0-63,6; BOD 23,5-29,3; total solid (TS) 26,5-45,4 dan suspended solid (SS) 17,1-35,9 g/L, semua variabel melampaui baku mutu sesuai Permen LH 05/2014 sehingga berpotensi mencemari lingkungan. Tanpa adanya upaya untuk mencegah atau mengelola secara efektif akan timbul dampak negatif terhadap lingkungan, seperti timbulnya bau, pencemaran air dan perairan umum di sekitar pabrik, dan gas rumah kaca yang berdampak pada perubahan iklim global (Ahmad et al., 2003).

Pengelolaan LCPKS dengan sistem kolam terbuka (*open ponding system*) akan menimbulkan emisi biogas dengan komposisi utama metana ($\mathrm{CH_4}$) 55-70% dan karbon dioksida ($\mathrm{CO_2}$) 35-45% (Deublein dan Steinhauster, 2008). Metana merupakan gas rumah kaca yang menyebabkan pemanasan global dan perubahan iklim. Oleh karena itu, perlu dilakukan pengelolaan-pengendalian emisi metana guna memperoleh manfaat (energi terbarukan) dan meniadakan mudaratnya (emisi gas rumah kaca (GRK)).

Gas metana sebagai penyusun utama biogas yang dihasilkan dari proses dekomposisi anaerobik senyawa organik yang berpotensi sebagai sumber energi yang merupakan energi terbarukan. Dalam setiap ton LCPKS (POME) dapat menghasilkan 28 m³ biogas (Ma *et al.*, 1999; Quah dan Gillies, 1984; Yacob *et al.*, 2006). Biogas dihasilkan sekitar 20 m³ dari setiap ton TBS (Alkusma, 2016) atau 184 kg setara emisi gas CO₂ (Suprihatin, 2009). Khemkhao *et al.* (2012), menyatakan bahwa LCPKS dengan *organic loading rate* (OLR), antara 2,2 dan 9,5 gram COD per liter per hari dengan perombakan anaerobik dapat menghasilkan biogas 13,2 liter/hari.

Menurut Alkusma *et al.* (2016), jika kapasitas pabrik kelapa sawit (PKS) sebesar 30 ton TBS/jam akan dihasilkan biogas ±600 m³/jam, atau setara dengan energi sebesar 3.720 kWh. Jika energi tersebut digunakan untuk membangkitkan listrik dengan *gas engine* (efisiensi 35%), maka akan dapat dibangkitkan energi listrik sebesar 1.303 kWh atau 1,3 MW. Penelitian Wibowo (2015), di Riau pada PKS kapasitas terpasang 60 ton TBS/jam (rata-rata kapasitas olah 41 ton/jam),

dihasilkan POME 22,55 ton/jam, dengan kadar COD 62.000 mg/liter berpotensi mempunyai bangkitan daya listrik 1,7 MWe.

Potensi konversi LCPKS (POME) menjadi biogas dan metana untuk Pembangkit Listrik Tenaga Biogas (PLTBg) cukup besar. Tahun 2014 mencapai 1.280 MWe, berasal dari produksi POME Indonesia sebesar 479.920 m³/hari dari lebih 750 unit PKS dengan kapasitas terpasang 34.280 ton TBS/jam (Rahayu et al., 2015). Pada pemanfaatan biogas dari POME untuk energi listrik, dapat diperoleh tiga manfaat sekaligus, yaitu: pengendalian potensi pencemaran lingkungan; produksi listrik dari biogas; perdagangan karbon (carbon trading) melalui Certified Emission Reduction (CER) dalam mekanisme pembangunan bersih (Clean Development Mecanism; CDM).

C. Gas Terbuang yang Bermanfaat dan Metode Pengukurannya

Biogas-metana yang teremisikan ke atmosfer hasil biodegradasi anaerobik LKPCS dengan sistem kolam (ponding system) merupakan limbah gas yang terbuang, padahal sangat bermanfaat bagi kehidupan. Produksi biogas-metana dari kolam anaerobik instalasi pengolahan air limbah (IPAL) sistem kolam di pabrik pengolahan kelapa sawit jumlahnya belum diketahui dengan pasti dan tidak terkendalikan (Wu et al., 2010). Gas ini terbuang atau terlepas ke udara (atmosfer) sehingga dari waktu ke waktu konsentrasinya di atmosfer makin meningkat. Gas ini setelah terbentuk tidak sempat dimanfaatkan, tetapi justru terlepas percuma (bebas) ke udara sebagai gas rumah kaca (GRK).

Gas metana yang menjadi bagian terbesar dalam biogas, akan dihasilkan dan dilepaskan ke atmosfer dari kolam anaerobik (anaerobic pond; AP) pada sistem IPAL pabrik kelapa sawit (Wu et al., 2010; Gobi dan Vadivelu, 2013). Dalam biogas mengandung metana 55 – 70 %, karbon dioksida 30 – 45 %, serta sejumlah kecil nitrogen, oksigen, uap air, dan hidrogen sulfida (Deublein dan Steinhauster, 2008; Ohimain et al., 2017). Biogas merupakan produk akhir dari degradasi anaerobik perombakan bahan organik oleh bakteri-bakteri anaerobik dalam lingkungan minimal oksigen. Jumlah produksi biogas-metana dari sistem IPAL PKS sangat besar, tetapi belum diketahui dengan tepat dari setiap pabrik kelapa sawit, sementara gas ini terus diemisikan setiap hari selama operasional PKS dan pengelolaan air limbah.

Pengukuran laju aliran (fluk) biogas serta komposisi senyawa gas, masih terbatas dalam peralatan, tingkat kesulitan saat sampling gas, biaya relatif mahal, juga karena sifat gas yang cepat berubah sesuai keadaan dan faktor lingkungan, serta belum menjadi kewajiban sesuai peraturan-perundangan industri kelapa sawit. Pengujian biogas-metana yang lazim dilakukan adalah dengan alat Gas Chromatography dan dilakukan di laboratorium, dengan biaya uji yang relatif tinggi dan masih sedikit keberadaannya.

Metode pengukuran telah dikembangkan untuk kuantifikasi dan monitoring fluks/emisi gas rumah kaca, khususnya gas metana dan karbon dioksida, pada perairan dan instalasi pengolahan air limbah, yaitu: menggunakan fourier transform infrared (FTIR) dan cavity ring-down spectroscopy (CRDS) yang dikombinasikan dengan berbagai metode (Kwok et al., 2015), dan teknik sampling dengan sungkup tertutup (closed static chambers) (Yacob et al., 2005; Yacob et al., 2006; Hasanudin et al., 2006; Park dan Craggs, 2007; Silva et al., 2015; Paredes et al., 2015; Lorke et al., 2015; 2; Silva, 2016). Metode lain yang sedang dikembangkan adalah CH, meter berbasis sensor dan mikrokontroler yang memungkinkan melakukan pengukuran secara terus-menerus, waktu nyata, dan pencatatan otomatis (Sugriwan dan Soesanto, 2017; Anwar et al., 2015; Sugriwan et al., 2015; Eugster dan Kling, 2012; Suyanto, 2014; Wijaya dan Subiakto, 2014). Pengukuran konsentrasi metana dan biogas berbasis sensor dapat dilakukan dengan cepat, hemat biaya, waktu nyata (real time), akuisisi data lebih mudah, lebih efektif karena langsung dilakukan di lapangan, jumlah unit sampel yang lebih banyak dan waktu yang lebih lama. Namun, sistem ini perlu penelitian lebih lanjut untuk meningkatkan akurasi dan keandalannya. Metode pengukuran ini masih terus berkembang dengan integrasi teknologi terbaru, seperti teknologi telemetri, Global System for Mobile Telecommunications (GSM), dan sistem Android.

Penilaian dan perhitungan emisi dan serapan GRK di berbagai bidang termasuk perkebunan dan industri kelapa sawit, menjadi kewajiban pelaku usaha kelapa sawit, sesuai mandat dalam UU 32/2009 serta indikator sistem sertifikasi Perkebunan Kelapa Sawit Berkelanjutan Indonesia (*Indonesian Sustainable Palm Oil Certification*; ISPO); (Perpres 44/2020 dan Permentan 11/2015). Hal ini menjadi kuantifikasi peranan

masing-masing kegiatan dan/atau usaha dalam penurunan emisi GRK, sesuai komitmen pemerintah Indonesia dalam KTT perubahan iklim 2015 (COP-21), dengan target pengurangan emisi gas rumah kaca hingga 29% tahun 2030. Dalam metode inventarisasi dan perhitungan emisi GRK dikenal istilah "tier", mancakup tier 1, 2 dan 3 (KLH, 2012). Makin tinggi kedalaman metode yang dipergunakan, maka inventarisasi GRK yang dihasilkan makin rinci dan hasil yang lebih akurat.

Guna mendapatkan data dengan tingkat ketelitian yang tinggi (tier 3), perlu adanya faktor emisi atau faktor konversi yang bersifat spesifik (lokal). Ketelitian tinggi ini juga diperlukan dalam penilaian penurunan emisi (emission reduction) GRK melalui program CER (Certified Emission Reduction) dalam skema CDM (Clean Development Mechanism). Di pabrik kelapa sawit, emisi gas metana dari instalasi pengolahan air limbah dengan kolam terbuka mengemisikan gas metana ke udara, memiliki faktor/koefisien konversi spesifik, secara teoretis (stoikiometri) sebesar 0,35 m³ CH₄ atau 0,25 kg CH₄ per kg COD-terdegradasi. Diperlukan metode dan teknik sampling, pengukuran, dan pengujian emisi gas metana dari setiap IPAL pabrik kelapa sawit untuk menentukan nilai yang tepat. Hal ini menjadi penting perlunya pengukuran lapangan, dengan peralatan yang portable, akurat (valid), konsisten dan andal (realibility), serta dapat dengan mudah dan cepat dalam pengukuranpengujiannya. Persamaan linear dengan koefisien konversi dan efisiensi konversi organik, dapat berguna dalam estimasi cepat dari total emisi metana pada industri kelapa sawit (Yacob et al., 2006).

Emisi biometana di pabrik kelapa sawit sangat dipengaruhi oleh faktor lingkungan (abiotik) dan faktor air limbah (Mahajoeno, 2008; Sarono, 2014). Faktor abiotik berkaitan dengan klimatis, sedangkan faktor air limbah berkaitan dengan inputan, proses dan manajemen PKS, serta sistem IPAL. Menurut Seadi *et al.* (2008) dan Drapcho *et al.* (2008), faktor yang memengaruhi produksi biogas, meliputi faktor anaerobik digester (suhu, pH, VFA, amonia, makro dan mikro nutrisi serta zat toksik), dan variabel operasional IPAL (OLR, HRT, dan variabel lainnya). Studi kinetika proses pembentukan biogas-metana pada digester (kolam) anaerobik perlu dilakukan, guna menentukan peranan variabel, seperti OLR, HRT dan suhu terhadap hasil biogas-metana (Linke, 2006; Lin *et al.*, 2011).

Pada IPAL PKS diperlukan pemeliharaan kolam limbah sehingga tidak terjadi pendangkalan yang dapat mempersingkat waktu penahanan hidrolik (HRT). Endapan lumpur (digestat) kolam limbah yang tebal, dan lapisan air limbah yang dangkal, memengaruhi produktivitas dan jumlah pelepasan gas metana dari kolam anaerobik. Hubungan berbagai variabel tersebut dapat menyusun model emisi gas metana dari kolam anaerobik. Pemodelan dengan jaringan saraf tiruan (JST) telah banyak diterapkan di bidang kesehatan, sumber daya alam dan lingkungan, dengan hasil yang akurat. Dalam proses optimasi variabel input model dengan karakteristik non-linear, untuk akurasi tinggi dan proses yang cepat JST dapat digabungkan dengan genetika algoritma (hybrid JST-GA); (Pal et al., 2009; Qdais et al., 2010).

Pertumbuhan jumlah pabrik kelapa sawit yang sangat pesat, disebabkan peningkatan luas lahan kebun dan produksi TBS saat ini. Hal tersebut tentu akan meningkatkan jumlah limbah, baik limbah padat maupun LCPKS. Akibatnya LCPKS dalam jumlah melimpah, dan potensial mencemari lingkungan air, tanah, dan udara. LCPKS kaya bahan organik potensial menjadi sumber pencemar lingkungan, tetapi sekaligus juga potensial sebagai sumber energi terbarukan (*renewable*) dan berkelanjutan (*sustainable*). Emisi metana dari sistem kolam IPAL PKS langsung ke atmosfer dengan jumlah yang tidak diketahui serta tidak dikendalikan. Emisi metana juga dipengaruhi oleh faktor lingkungan (abiotik) dan faktor air limbah. Untuk itu diperlukan sebuah kajian/penelitian mendalam untuk memperoleh nilai estimasi emisi metana kolam anaerobik, koefisien konversi emisi metana, dan faktor-faktor yang memengaruhinya melalui pemodelan lingkungan, antara lain berbasis jaringan saraf tiruan.

BIOGRAFI PENULIS

Dr. Ir. Ledis Heru Saryono Putro, M.Si., putra dari pasangan Heru Saryono, BA dan Sutini (almarhumah), dilahirkan di Wonogiri, Jawa Tengah pada hari Senin Kliwon tanggal 23 Maret 1970. Sejak kecil sampai dengan menyelesaikan pendidikan SMA-nya bersama orang tuanya di Wonogiri.

Menamatkan pendidikan TK PKK Wonokarto (tamat 1976), SDN Giripurwo II (tamat 1982),

SMPN Selogiri (tamat 1985), SMAN 1 Wonogiri (tamat 1988). Ketika SD s.d SMA aktif dalam kegiatan sekolah, beberapa kegiatan yang diikutinya: pramuka dan ekstra-kurikuler keagaman islam khususnya saat bulan ramadhan. Beberapa kegiatan ini telah menjadikan penulis memiliki ketrampilan dasar, keberanian-kemandirian, sifat kerja keras, dan semangat yang lebih tinggi.

Pada jenjang pendidikan tinggi, melalui program PMDK (Penelusuran Minat dan Kemampuan) tahun 1988 diterima di Institut Pertanian Bogor (IPB) dengan bebas tes. Pada tahun 1993 berhasil menyelesaikan pendidikan Sarjana dari Jurusan Manajemen Hutan, Fakultas Kehutanan, IPB. Mulai tahun 2003 melanjutkan pendidikan Magister (S2) di Universitas Sriwijaya Program Studi Pengelolaan Lingkungan dan tamat 2006. Pada Januari 2016 diterima pada Program Studi Doktor (S3) Ilmu Lingkungan pada almamater yang sama di Universitas Sriwijaya, dan berhasil tamat dengan memperoleh gelar Doktor bidang ilmu lingkungan pada 30 Juli 2020, dengan indeks prestasi komulatif (IPK) 4,0.

Di bidang pekerjaan dimulai tahun 1993 setelah tamat dari IPB, sempat bekerja di konsultan perencanaan PT Bangun Wanadwipa Asri di Jakarta. Sesuai ke-ilmuanya dan naluri sebagai *forester*, maka sejak Mei 1994 s.d April 1997 bekerja di perusahaan pemegang konsesi Hak Pengusahaan Hutan (HPH) PT Gema Sanubari di Pulau Buru, Provinsi Maluku. Periode Mei 1997 s.d Juli 2000 pada perkebunan kelapa sawit PT Wanapotensi Guna di Kabupaten Musi Banyuasin, Provinsi Sumatera Selatan.

Karena keinginan menjadi PNS mengikuti jejak orang tuanya, maka melalui perjuangan yang keras pada Agustus 2000 diangkat menjadi Calon Pegawai Negeri Sipil Daerah (CPNSD) dan bertugas di Sekretariat Daerah Kabupaten Musi Banyuasin sebagai Staf Bagian Lingkungan Hidup. Dengan terbentuknya Kabupaten Banyuasin sebagai kabupaten baru, maka pada Agustus 2002 pindah tugas ke Kabupaten Banyuasin ditempatkan pada Dinas Pertambangan dan Sumberdaya Energi. Sejak 31 Desember 2004 memangku Jabatan sebagai Kepala Seksi pengelolaan dan pemantauan lingkungan. Selanjutnya pada Januari 2009 s.d Agustus 2011 memangku jabatan sebagai Kepala Bidang pemantauan dan sarana teknis, dan Agustus 2011 s.d Agustus 2012 sebagai Kepala Bidang komunikasi, penegakan hukum lingkungan dan pemberdayaan masyarakat pada BLH Kabupaten Banyuasin. Sejak September 2017 pindah tugas di Kementerian Agama RI, pada Bagian Tata Usaha Fakultas Sains dan Teknologi UIN Raden Fatah Palembang. Pengalaman menjadi tenaga pengajar (dosen tidak tetap) dimulai sejak Januari 2017 di Prodi Biologi UIN Raden Fatah Palembang dan berlanjut sampai saat ini.

Ketika bertugas sebagai PNS di bidang lingkungan hidup, melakukan tugas-pokok bidang perlindungan dan pengelolaan lingkungan hidup, serta tugas-tugas lain, yaitu:

- 1. Anggota tim teknis Komisi Penilai Amdal (KPA) Kabupaten Musi Banyuasin tahun 2001-2002.
- 2. Anggota tim teknis Komisi Penilai Amdal (KPA) Kabupaten Banyuasin tahun 2002 s.d 2012.
- 3. Pejabat Pengawas Lingkungan Hidup Daerah (PPLHD) Kabupaten Banyuasin periode (SK Bupati Banyuasin No. 104/2011) tahun 2011-2012.

Dalam menunjang tugas pada bidang yang digeluti dan untuk pengembangan kapasitas serta kompetensi, maka diikutinya berbagai uji kompetensi sehingga diperoleh sertifikat kompetensi yaitu:

- Ketua Tim Penyusun Amdal (KTPA) dari LSK-Intakindo sejak Juni 2011 dan saat ini proses perpanjangan ketiga LSP-LHI (BNSP); (Nomor: 74909 2133 8 0000192 2017; Reg. Nomor: LHK 564 00179 2017).
- 2. Auditor ISPO Independen dari Komisi ISPO (*Indonesian Sustainable Palm Oil*), Dirjen Perkebunan, Kementerian Pertanian RI, sejak Mei 2013 sampai sekarang.

Di bidang kajian dampak lingkungan, baik sebagai tim teknis KPA maupun sebagai pemegang KTPA, telah melakukan pemeriksaan dan penilaian dokumen Analisis Mengenai Dampak Lingkungan Hidup (Amdal) sebanyak 54 dokumen dengan pemrakarsa instansi pemerintah dan non-pemerintah; serta pemeriksaan dokumen Upaya Pengelolaan Lingkungan Hidup dan Upaya Pemantauan Lingkungan Hidup (UKL-UPL); (Dokumen Pengelolaan Lingkungan Hidup; DPLH) 9 dokumen pada periode 2001 s.d 2012. Selain itu, sejak 2012 sampai dengan saat ini, telah melakukan penyusunan dokumen Amdal sebanyak 6 dokumen dan sebagian besar sebagai ketua tim (KTPA), serta UKL-UPL (DPLH) 18 dokumen. Penilaian dan penyusunan Amdal atau UKL-UPL dimaksud pada jenis rencana kegiatan, seperti: perkebunan dan pabrik pengolahan kelapa sawit, HTI, SUTT, pertambangan batubara, kawasan industri, dermaga khusus, PLTG, pembangunan mall (super market), pabrik crumb-rubber (karet remah), miniman ringan, seismik Migas, dan lain-lain).

Dalam menunjang pelaksanaan tugas secara kontinu serta kompetensi di bidang perlindungan dan pengelolaan sumberdaya alam dan lingkungan serta kemampuan penunjang lainnya, bahkan telah dimulai ketika masih mahasiswa S1 di IPB, dengan telah mengikuti berbagai pelatihan tingkat daerah dan nasional, yaitu:

No	Pelatihan	Penyelenggara	Waktu
1.	Pelatihan Kader dan Kursus Ketrampilan Budidaya Lebah Madu	Dephut-FMSC-Fahutan IPB	Bogor; Parung Panjang, 11 Mei s.d 2 Juni 1991
2.	Teknik Pengukuran dan Monitoring Biodiversity Hutan Tropika Indonesia	Fahutan, IPB	Bogor, 17-27 April 1995
3.	Diklat Prajabatan Golongan III	LAN RI dan Pemprov Sumsel	Palembang, 4-23 Des. 2000
4.	AMDAL Type A	Bapedalda Prov. Sumsel-PPLH Unsri	Palembang, 9-22 Mei 2001
5. \	Kursus Teknisi Komputer	Pemkab. MUBA	Sekayu, 13-17 Mei 2002
6.	AMDAL Type C	Bapedalda Prov. Sumsel dan PPLH Unsri	Palembang, 21-27 Agust. 2002
7.	Teknik Penyusunan Peraturan Perundangan	Pemkab. MUBA	Sekayu, 3-4 Sept. 2002
8.	Sistem Informasi Kebakaran	EU-SSFFMP	Palembang, 27- 29 Okt.2003
9.	Diklat Kepemimpinan Tingkat IV (Lulus; Baik Sekali)	Pemkab Banyuasin dan Badan Diklat Prov. Sumsel	Sembawa, 16 Mei s.d 21 Juni 2005
10.	Pelatihan SAAK (sistem analisis ancaman kebakaran; Fire treat analysis) dgn ext. GIS dan pemetaan bahan bakar, serta resiko penyulutan api pada Karhutlah	EU-SSFFMP	Palembang, 27-28 Agust. 2005
11.	Diklat Pengelolaan Laboratorium Lingkungan	KLH RI	Serpong, 12-15 Maret 2007
12.	AMDAL Penyusun	PPLH Unsri	Palembang, 2 Juni – 3 Juli 2008
13.	Dasar-dasar Pengawasan Lingkungan Hidup (Lulus; Baik Sekali)	KLH RI	Serpong, 24 Nov. – 11 Des. 2010
14.	Pelatihan Penentuan Daya Tampung Sungai dengan Metode QUAL2K	Pusat Pengelolaan Ekoregion Sumatera (KLH)	Batam, 15-17 Maret 2011

No	Pelatihan	Penyelenggara	Waktu
15.	Training Operasional AAS: Shimadzu AA-7000	PT Ditek Jaya - Labling BLH Banyuasin	Pangkalan Balai, 16-17 Juni 2011
16.	Pelatihan Audit Lingkungan	PPLH-LPPM IPB	Bogor, 18-25 Juli 2011
17.	Peningkatan Kapasitas Sertifikasi Mediator (Lulus sebagai Mediator)	Kerjasama KLH - IICT	Park Hotel- Jakarta 21-25 Mei 2012
18.	Pelatihan Auditor ISPO (Lulus sebagai Auditor ISPO)	Komisi ISPO (Dirjen Perkebunan) Kementan RI	Santika Hotel- Bogor, 22-27 April 2013
19. ۱	Pelatihan Auditor/Lead Auditor Sistem Manajemen Mutu ISO 9001: 2008; (Lulus sebagai Auditor/Lead Auditor)	PT Sucofindo-SICS	Hotel Bidakara- Jakarta, 23-27 Sept. 2013
20.	Pelatihan "GHG Calculator for Palm Oil Industries"	PT Prosympac-LRQA Business Assurance	Royal Kuning- an Hotel- Jakarta, 11-13 Des. 2013
21.	Pelatihan Penyegaran Auditor ISPO (mengacu Permentan No. 11 Tahun 2015)	Sekretariat Komisi ISPO-Kementan RI - LS PT AJA Sertifikasi Indonesia	Rumah Joglo- Bogor, 12 Mei 2015
22.	Pelatihan Penggunaan Software Pengolahan Data Spasial dan Pemetaan Digital (Map Sources, MapInfo Pro, ArcGIS, Global Mapper)	WildEarth Geosains (dari Jambi)	Palembang, 27- 31 Mei 2015
23.	Pelatihan Lead Auditor Sistem Manajemen Lingkungan; ISO 14001: 2004 dan Pemahaman (transition) ISO 14001: 2015; (Lulus sebagai Auditor/Lead Auditor)	PT AJA Sertifikasi Indonesia (IEMA Certified)	Hotel Savero Golden Flower- Bogor, 19-24 Oktober 2015
24.	Diklat Fungsional Perencana Madya Spasial	Prodi Magister Perencanaan Kota dan Daerah (MPKD) UGM	Yogyakarta, 25 September s.d 13 Oktober 2017
25.	Penyegaran dan Pendalaman Prinsip dan Kriteria ISPO Permentan Nomor 11 Tahun 2015	Sekretariat Komisi ISPO (Kementan RI)- LS PT AJA Sertifikasi Indonesia	El Cavana Hotel-Bandung, 24-25 Oktober 2019

Selama menjalankan tugas, dan sejak kuliah S1 di Fakultas Kehutanan IPB, Pemkab Musi Banyuasin, Pemkab Banyuasin, dan Fakultas Sains dan Teknologi UIN Raden Fatah Palembang, beberapa karya yang telah dibuat diantaranya:

Buku:

- 1. Inisiasi dan tahapan pengembangan sertifikasi *Indonesian Sustainable Palm Oil Certification System* (ISPO) kebun dan pabrik pengolahan kelapa sawit, Palembang, 2013.
- 2. Perkembangan dan program energi nuklir: Alternatif energi baru yang aman dan bersih?, Palembang: *Rafah Press*, 2020.

Penelitian:

- 1. Model pendugaan volume batang meranti merah (*Shorea parfivolia* Dyer) berdasarkan integrasi persamaan taper di Kalimantan (Skripsi). Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, 1993.
- 2. Evaluasi kualitas air dan tanah di areal yang diaplikasikan limbah cair kelapa sawit (Tesis). Program Studi Pengelolaan Lingkungan, Program Pascasarjana Universitas Sriwijaya, 2006.
- 3. Penelitian aplikasi lahan air limbah (*land application*) Pabrik Pengolahan Kelapa Sawit, Desa Bentayan, Kabupaten Banyuasin, 2013 (Ketua).
- 4. Produksi biometana dari air limbah hasil pengolahan tandan buah segar kelapa sawit (Disertasi). Program Studi Doktor Ilmu Lingkungan, Program Pascasarjana Universitas Sriwijaya, 2020.

Artikel (jurnal):

- 1. Biomethane emissions: measurement in wastewater pond at palm oil mill by using TGS2611 methane gas sensor. Journal of Ecological Engineering (JEE), (Scopus Q3), Vol. 20 No. 6, online 20 Mei 2019. https://doi.org/10.12911/22998993/108696.
- 2. Modeling methane emission of wastewater anaerobic pond at palm oil mill using radial basis function neural network. International

Journal on Advanced Science, Engineering and Information Technology (IJASEIT), (Scopus Q2), Vol. 10 No. 1, online 26 Februari 2020. http://dx.doi.org/10.18517/jjaseit. 10.1.9577.

Pertemuan ilmiah dan workshop tingkat nasional dan international yang pernah diikuti diantaranya:

- 1. Simposium: The 1st Regional Symposium on Integrated Energy and Environment Management (RSIEEM'2010). Engineering Faculty of Sriwijaya, Auditorium Program Pascasarjana Universitas Sriwijaya, Palembang, 15-16 Desember 2010 (Peserta).
- Workshop Peningkatan Kapasitas Fasilitator, Mediator dan Negosiator dalam Penyelesaian Sengketa di Luar Pengadilan Se-Ekoregion Sumatera. Deputi Bidang Penaatan Hukum Lingkungan-KLH, Medan, 11-13 Oktober 2011 (Peserta).
- 3. Workshop Pengembangan Profesi Berkelanjutan (PPB) bagi Pemegang Sertifikat Kompetensi Penyusun Dokumen Amdal. LPP INTAKINDO, Jakarta, 14-15 Desember 2013.

Kegiatan pengabdian masyarakat yang pernah dilakukan di bidang manajemen/pengelolaan sumberdaya alam dan lingkungan, diantaranya:

- 1. Auditor ISPO independen: Proses audit stage II Sistem Sertifikasi Kelapa Sawit Berkelanjutan Indonesia (ISPO) di Perkebunan dan Pabrik Pengolahan Kelapa Sawit di Kabupaten Musi Banyuasin, April 2018.
- 2. Narasumber (dan peserta) kegiatan: Supervisi pengelolaan lahan konsesi pada Kesatuan Hidrologis Ekosistem Gambut (KHEG) oleh Badan Restorasi Gambut Republik Indonesia di perkebunan kelapa sawit Kabupaten Musi Banyuasin, 8-10 Juli 2019.
- 3. Narasumber workshop: Penyegaran dan Pendalaman Prinsip dan Kriteria ISPO Permentan Nomor: 11/Permentan/OT.140/3/2015 tentang Sistem Sertifikasi Kelapa Sawit Berkelanjutan Indonesia (Indonesian Sustainable Palm Oil Certification System; ISPO), Sekretariat Komisi ISPO (Kementan RI)-LS PT AJA Sertifikasi Indonesia, El Cavana Hotel Bandung, 24-25 Oktober 2019.
- 4. Auditor ISPO independen: *Remote Audit Surveillance* 2020 Perkebunan dan Pabrik Pengolahan Kelapa Sawit di Kabupaten Musi Banyuasin, 28-30 September 2020.

Untuk menunjang wawasan keilmuan, bidang penelitian dan pengembangan serta pengabdian pada masyarakat, terdaftar sebagai anggota dan aktif pada perkumpulan tenaga ahli lingkungan, diantaranya:

- 1. Perkumpulan Ahli Lingkungan Indonesia (*Indonesian Environmental Scientists Association*; IESA); (https://www.iesa.or.id), sejak 2018.
- 2. Ikatan Ahli Lingkungan Hidup Indonesia (IALHI); (https://www.ialhi.or.id), sejak 2020.

Demikian biografi ini dibuat dengan sebenarnya, semoga dapat menjadi informasi yang bermanfaat.

Palembang, Februari 2021

Penulis,

Dr. Ir. Ledis Heru S. Putro, M.Si.

Untuk sarana komunikasi dan menghubungi melalui:

Nama : Dr. Ir. Ledis Heru Saryono Putro, M.Si.

Penugasan : Fakultas Sains dan Teknologi UIN Raden Fatah

Palembang

Alamat : Griya Sukajadi Permai II, Blok U No.1 RT 16/05, Kel.

Sukajadi Kec. Talang Kelapa Kab. Banyuasin Prov.

Sumatera Selatan

Telp./WA : 0821-79440039/0812-7104598

e-mail : lherusp@radenfatah.ac.id; lherusp316@gmail.com